
Introduction to dojox.gfx3d library

Kun Xi

June 27, 2007

Abstract

dojox.gfx3d is proposed to render 3D objects in web browser, this
introduction states the reasoning, desigh philosophy and unleashes some
implementation details for the users to have a better understanding how
this library works.

1 History of Graphic Library

dojo.gfx library has been developed since the Dojo Summer of Code 2006, This
2D graphics library provides a unified interface to manipulate the vector graph-
ics, with 95% behavior consistence1 for SVG and VML render engines, across
Mozilla Firefox, Safari, Opera and Microsoft Internet Explorer. Chart develop-
ers show great interest in dojo.gfx for data visualization and they encourage us
to extend the library to support three dimension objects.

dojox.gfx3d is the new library for this feature request. Careful readers may
notice the subtle name change: dojo.gfx is developed in dojotoolkit 0.4 code
base, using dojo namespace; and dojox.gfx3d is proposed to work in dojo 0.9
code base only, using dojox namespace. To make things even worse, we have
migrated dojo.gfx to the 0.9 code base and rename it as dojox.gfx. In short,
dojo.gfx and dojox.gfx refer to 2D graphics library, with the same functionality
but in different code base, dojox.gfx3d is the 3D graphics library.

Notice: all the names are subject to change since we are in quite a early
stage.

2 Fundamental of Computer Graphics

Mathematically, three dimensional object is represented by sets of points (x, y, z).
The coordination can be translated, rotated and scaled, i.e world transform2 in
3D domain; then 3D objects are projected to 2D shapes for presentation, aka
Camera transform.

2.1 World Transform

World transform is quite useful. Consider the the problem of a rotated cube.
There are two approaches:

1Due to the limitation of VML, the behavior of radiantGradience is not the same.
23D Projection: http://en.wikipedia.org/wiki/3d projection

1



1. Calculate the coordinates manually; which is a troublesome, tedious.

2. Create an “normal” cube, then apply a set of world transformations that
move it to the right position and orientation.

Let’s examine the second approach:

T =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 - translation matrix

Rx =


1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

 - rotation about the x -axis

Ry =


cosβ 0 sinβ 0
0 1 0 0
−sinβ 0 cosβ 0
0 0 0 1

 - rotation about the y-axis

Rz =


cosγ −sinγ 0 0
sinγ cosγ 0 0
0 0 1 0
0 0 0 1

 - rotation about the z -axis

S =


Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

 - scale matrix

dojox.gfx3d uses OpenGL convention for the world transform, the world
transformation matrix is defined as:

W = T×Rx ×Ry ×Rz × S (1)

We apply the world transform matrix to the left side of the corordination
(x, y, z) to get the new coordination(x′, y′, z′):

x′

y′

z′

c

 = W ×


x
y
z
1

 (2)

2



2.2 Camera Transform

The viewer’s coordinates determine the mapping of a 3D object to a 2D space.
These coordinations describe the position and angle of the viewer.

Isometric projection is used in dojox.gfx3d to project the transformed 3D
objects to 2D shapes, which is much simpler than persepctive projection and
still widely used in the pseudo 3D games. The identity camera transform casts
(x, y, z) to (x, y), imagine parallel lights from the Z-axis casting a shadow on
X − Y plate. As we transform, rotate the plate, the coordinations will change.
In other words, we change the scene’s position in space, while the position of
the illumnation source does not change.

CT =


1 0 0 −x
0 1 0 −y
0 0 1 −z
0 0 0 1

 - inverse object translation

CRx =


1 0 0 0
0 cosα sinα 0
0 −sinα cosα 0
0 0 0 1

 - inverse rotation about the x -axis

CRy =


cosβ 0 −sinβ 0
0 1 0 0
sinβ 0 cosβ 0
0 0 0 1

 - inverse rotation about the y-axis

CRz =


cosγ sinγ 0 0
sinγ cosγ 0 0
0 0 1 0
0 0 0 1

 - inverse rotation about the z -axis

The camera transform matrix is defined as

C = CRx ×CRy ×CRz ×CT (3)

Note: The order of transform matrices matters.
The overall 3D to 2D projection matrix is:

M = C×T (4)

3 Design Philosophy

There are no native 3D render engines available in the main stream web browsers
so far, therefore, dojox.gfx3d will project 3D objects to 2D shapes, then render
surfaces using dojox.gfx to mimic the lighting and texture. dojox.gfx3d is built
upon dojox.gfx, so it is possible for us to manipulate the underlying 2D render
engines via dojox.gfx interface. We would like to deliver the functionalities in
one implementation instead of differentiating SVG and VML.

3



3.1 Viewport

dojox.gfx3d.Viewport (Viewport in the following) is the container for all 3D
objects. The Viewport is logically another dojox.gfx.Group object. This inter-
operation helps to integrate dojox.gfx3d into dojox.gfx and improve the code
reuse. Pragmatically, users may aggregate more than one Viewport into Surface,
a good candidate for subgraphics.

Viewport is derived from the dojox.gfx.Group, and created by dojox.gfx.Surface.createViewport.

dojo.declare("dojox.gfx3d.Viewport", dojox.gfx.Group, ... ...

dojo.extend(dojo.gfx.Surface, {
createViewport : function() {

return this.createObject(dojox.gfx3d.Viewport);
}

The following interfaces are exposed to create 3D objects3:

dojox.gfx3d.Viewport.createLine(line)
dojox.gfx3d.Viewport.createPath(path)
dojox.gfx3d.Viewport.createTriangle(triangle)
dojox.gfx3d.Viewport.createCube(cube)
dojox.gfx3d.Viewport.createCylinder(cylinder)
dojox.gfx3d.Viewport.createPipe(pipe)
dojox.gfx3d.Viewport.createCone(cone)

Viewport object manages the camera and lightings as well:

dojox.gfx3d.Viewport.setCameraTransform(matrix)
dojox.gfx3d.Viewport.applyCameraRightTransform(matrix)
dojox.gfx3d.Viewport.applyCameraLeftTransform(matrix)
dojox.gfx3d.Viewport.applyCameraTransform(matrix)

dojox.gfx3d.Viewport.addLighting(lighting)

Once the camera and/or lighting is chaned, all 3D objects inside the viewport
have to be re-rendered. To eliminate unnecessary computation, the Viewport
will not take action until the render is explicitly called. render will iterate all
the children in the viewport and redraw them by calling each callback function
Object.render with updated environment.

3.2 Object

dojox.gfx3d.Object(Object in the following) is the base class for concrete 3D
objects. Object is derived from dojox.gfx.Shape to reuse the Group/Shape in-
frastructure from dojox.gfx. The following operations are added or overrided
for the new functionalities:

setObject the equivalent of dojox.gfx.setShape, using this new name to avoid
confusion.

3the default meta data of 3D objecs are discussed in 3.4

4



setTransform Using the dojox.gfx3d.matrix family to manipulate the trans-
form matrix.

render a pure virtual function is used render itself using Viewport’s environ-
ment, all concrete 3D objects should override it.

The following 3D objects are derived from Object:

• dojox.gfx3d.Line

• dojox.gfx3d.Path

• dojox.gfx3d.Triangle

• dojox.gfx3d.Cube

• dojox.gfx3d.Cylinder

• dojox.gfx3d.Cone

• dojox.gfx3d.Pipe

3.3 Scene

dojox.gfx3d.Scene(Scene in the following) is a container for Scene and other
3D objects, equivalent to dojo.gfx.Group. Users can group several 3D objects
together and apply the world transformation to them in one shot. Scene also
supports to create 3D objects.

3.4 Meta Object

Meta object4 are the interface for user to create, set/get the attributes of 3D
objects.

3.4.1 Line

Line is described by the two ends’ coordinations: (x1, y1, z1, x2, y2, z2).

3.4.2 Path

Path supports two mode as dojox.gfx.Path does, Absolute and Relative. In Ab-
solute mode, the coordination is the absolute corordination in the 3D viewport
mode, while in Relative mode, the coordination is the offset of current position.
SVG convention is used as the drawing commands as dojox.gfx. The following
drawing commands are proposed to be supported:

moveTo move current postion to the new position

lineTo draw a line from current position to a new position

curveTo draw a bezier curve in 3D space.
4Any suggestion for a new name of this?

5



3.4.3 Triangle

Triangle is the fundamental element to build more complicated 3D objects,
described as a (x, y, z), b (x, y, z), c (x, y, z).

3.4.4 Cube

Cube5 is defined by the two vertices in the diagram, uppper (x, y, z) and lower
(x, y, z), each surface is perpendicular to one of axises.

3.4.5 Cylinder

Cylinder is defined as bottom (x, y, z), height and radius. bottom is the coror-
dinations of the center of bottom surface.

3.4.6 Cone

Cone6 is defined as top (x, y, z), height and radius. top is the coordination of
the tip of cone.

3.4.7 Pipe

Pipe7 may stir the interest of Chart developers. It is charactized by 3D Path
with radius and texture. It could be a cornerstone to build professional pseudo
chart.

3.5 Meta

3.5.1 Transform matrix

Transform matrix is defined as:
xx xy xz dx
yx yy yz dy
zx zy zz dz
0 0 0 1


so the 3D transform matrix in dojox.gfx3d is defined as a dictionary: {xx, xy, xz, yx, yy, yz, zx, zy, zz, dx, dy, dz}

3.5.2 Lighting

TODO

3.5.3 Texture

The following textures are supported:

Solid Solid color {r, g, b, alpha}, alpha indicates the transparency.

Hollow Specialized Solid, aka {r : 255, g : 255, b : 255, alpha : 1.0}
5Or should we use Box?
6Can we render the surface using linearGradient to support Cone?
7Do we have problem to implement this?

6



4 Conclusion

dojox.gfx3d rocks.

7


